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1. Introduction 

1.1 Purpose 

The moment-area method, developed by Otto Mohr in 1868, is a powerful tool for 

finding the deflections of structures primarily subjected to bending. Its ease of finding 

deflections of determinate structures makes it ideal for solving indeterminate 

structures, using compatibility of displacement. 

 

 
Otto C. Mohr (1835-1918) 

 

Mohr’s Theorems also provide a relatively easy way to derive many of the classical 

methods of structural analysis. For example, we will use Mohr’s Theorems later to 

derive the equations used in Moment Distribution. The derivation of Clayperon’s 

Three Moment Theorem also follows readily from application of Mohr’s Theorems. 
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2. Theory 

2.1 Basis 

We consider a length of beam AB in its undeformed and deformed state, as shown on 

the next page. Studying this diagram carefully, we note: 

 

1. AB is the original unloaded length of the beam and A’B’ is the deflected 

position of AB when loaded. 

 

2. The angle subtended at the centre of the arc A’OB’ is θ  and is the change in 

curvature from A’ to B’. 

 

3. PQ is a very short length of the beam, measured as ds  along the curve and dx  

along the x-axis. 

 

4. dθ  is the angle subtended at the centre of the arc . ds

 

5. dθ  is the change in curvature from P to Q. 

 

6. M is the average bending moment over the portion  between P and Q. dx

 

7. The distance  is known as the vertical intercept and is the distance from B’ to 

the produced tangent to the curve at A’ which crosses under B’ at C. It is 

measured perpendicular to the undeformed neutral axis (i.e. the x-axis) and so 

is ‘vertical’. 

∆
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Basis of Theory 
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2.2 Mohr’s First Theorem (Mohr I) 

Development 

Noting that the angles are always measured in radians, we have: 

 

 
ds R d

dsR
d

θ

θ

= ⋅

∴ =
 

 

From the Euler-Bernoulli Theory of Bending, we know: 

 

 1 M
R EI
=  

 

Hence: 

 

 Md ds
EI

θ = ⋅  

 

But for small deflections, the chord and arc length are similar, i.e. , giving: ds dx≈

 

 Md dx
EI

θ = ⋅  

 

The total change in rotation between A and B is thus: 

 

 
B B

A A

Md dx
EI

θ =∫ ∫  

 

Dr. C. Caprani 7



Structural Analysis III 

The term M EI  is the curvature and the diagram of this term as it changes along a 

beam is the curvature diagram (or more simply the M EI  diagram). Thus we have: 

 

 
B

BA B A
A

Md dx
EI

θ θ θ= − = ∫  

 

This is interpreted as: 

 

 [ ]Change in slope Area of  diagram
AB

AB

M
EI

⎡ ⎤= ⎢ ⎥⎣ ⎦
 

 

This is Mohr’s First Theorem (Mohr I): 

 

The change in slope over any length of a member subjected to bending is equal 

to the area of the curvature diagram over that length. 

 

Usually the beam is prismatic and so E and I do not change over the length AB, 

whereas the bending moment M will change. Thus: 

 

 1 B

AB
A

M dx
EI

θ = ∫  

 [ ] [ ]Area of diagram
Change in slope AB

AB

M
EI

=  
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Example 1 

For the cantilever beam shown, we can find the rotation at B easily: 

 
 

Thus, from Mohr I, we have: 

 

 
[ ]Change in slope Area of  diagram

1
2

AB
AB

B A

M
EI

PLL
EI

θ θ

⎡ ⎤= ⎢ ⎥⎣ ⎦

− = ⋅ ⋅

 

 

Since the rotation at A is zero (it is a fixed support), i.e. 0Aθ = , we have: 

 

 
2

2B
PL
EI

θ =  
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2.3 Mohr’s Second Theorem (Mohr II) 

Development 

From the main diagram, we can see that: 

 

 d x dθ∆ = ⋅  

 

But, as we know from previous,  

 

 Md dx
EI

θ = ⋅  

 

Thus: 

 

 Md x dx
EI

∆ = ⋅ ⋅  

 

And so for the portion AB, we have: 

 

 

 First moment of  diagram about 

B B

A A

B

BA
A

Md x dx
EI

M dx x
EI

M B
EI

∆ = ⋅ ⋅

⎡ ⎤
∆ = ⋅⎢ ⎥

⎣ ⎦

=

∫ ∫

∫  

 

This is easily interpreted as: 
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Distance from  to centroid Area of Vertical

of  diagramIntercept  diagramBA
BA BA

B
MM
EIEI

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥= × ⎛ ⎞⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 

 

This is Mohr’s Second Theorem (Mohr II): 

 

For an originally straight beam, subject to bending moment, the vertical 

intercept between one terminal and the tangent to the curve of another 

terminal is the first moment of the curvature diagram about the terminal where 

the intercept is measured. 

 

There are two crucial things to note from this definition: 

 

• Vertical intercept is not deflection; look again at the fundamental diagram – it 

is the distance from the deformed position of the beam to the tangent of the 

deformed shape of the beam at another location. That is: 

 

 δ∆ ≠  

 

 

• The moment of the curvature diagram must be taken about the point where the 

vertical intercept is required. That is: 

 

 BA AB∆ ≠ ∆  

 

Dr. C. Caprani 11



Structural Analysis III 

Example 2 

For the cantilever beam, we can find the defection at B since the produced tangent at 

A is horizontal, i.e. 0Aθ = . Thus it can be used to measure deflections from: 

 
Thus, from Mohr II, we have: 

 

 

1 2
2 3BA

PL LL
EI

⎡ ⎤ ⎡ ⎤∆ = ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  
 

And so the deflection at B is: 

 

 
3

3B
PL
EI

δ =  
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2.4 Area Properties 

These are well known for triangular and rectangular areas. For parabolic areas we 

have: 

 

Shape Area Centroid 

 

2
3

A xy=  1
2

x x=  

 

2
3

A xy=  5
8

x x=  

 

1
3

A xy=  3
4

x x=  
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3. Application to Determinate Structures 

3.1 Basic Examples 

Example 3 

For the following beam, find Bδ , Cδ , Bθ  and Cθ  given the section dimensions shown 

and 210 kN/mmE = . 

 

 
 

To be done in class. 
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Example 4 

For the following simply-supported beam, we can find the rotation at A using Mohr’s 

Second Theorem. The deflected shape diagram is used to identify relationships 

between vertical intercepts and rotations: 

 

 
 

The key to the solution here is that we can calculate BA∆  using Mohr II but from the 

diagram we can see that we can use the formula S Rθ=  for small angles: 

 

 BA AL θ∆ = ⋅  

 

Therefore once we know BA∆  using Mohr II, we can find A BA Lθ = ∆ . 

 

To calculate BA∆  using Mohr II we need the bending moment and curvature 

diagrams: 
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Thus, from Mohr II, we have: 

 

 
3

1
2 4 2

16

BA
PL LL
EI

PL
EI

⎡ ⎤ ⎡ ⎤∆ = ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

 

 

But, BA L Aθ∆ = ⋅  and so we have: 

 

 2

16

BA
A L

PL
EI

θ ∆
=

=
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3.2 Finding Deflections 

General Procedure 

To find the deflection at any location x from a support use the following relationships 

between rotations and vertical intercepts: 

 

 
 

Thus we: 

1. Find the rotation at the support using Mohr II as before; 

2. For the location x, and from the diagram we have: 

 

 x B xx Bδ θ= ⋅ − ∆  
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Maximum Deflection 

To find the maximum deflection we first need to find the location at which this 

occurs. We know from beam theory that: 

 

 d
dx
θδ =  

 

Hence, from basic calculus, the maximum deflection occurs at a rotation, 0θ = : 

 

 
 

To find where the rotation is zero: 

1. Calculate a rotation at some point, say support A, using Mohr II say; 

2. Using Mohr I, determine at what distance from the point of known rotation (A) 

the change in rotation (Mohr I), Axdθ  equals the known rotation ( Aθ ).  

3. This is the point of maximum deflection since: 

 

 0A Ax A Adθ θ θ θ− = − =  
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Example 5 

For the following beam of constant EI: 

(a) Determine Aθ , Bθ  and Cδ ; 

(b) What is the maximum deflection and where is it located? 

Give your answers in terms of EI. 

 

 
 

The first step is to determine the BMD and draw the deflected shape diagram with 

rotations and tangents indicated: 
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Rotations at A and B 

To calculate the rotations, we need to calculate the vertical intercepts and use the fact 

that the intercept is length times rotation. Thus, for the rotation at B: 

 

 

2 1 4 12 2 2 4
3 2 3 2

4 20
3 3

8
8

AB

AB

EI M

M

M
M

M

EI

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∆ = ⋅ ⋅ ⋅ + + ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞= +⎜ ⎟
⎝ ⎠

=

∴∆ =

 

 

But, we also know that 6AB Bθ∆ = . Hence: 

 

 

86

4 1.33
3

B

B

M
EI

M M
EI E

θ

θ

=

I
∴ = =

 

 

Similarly for the rotation at A: 

 

 

2 1 1 14 4 4 2 2
3 2 3 2

16 14
3 3

10
10

BA

BA

EI M

M

M
M

M

EI

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∆ = ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞= +⎜ ⎟
⎝ ⎠

=

∴∆ =

 

 

But, we also know that 6BA Aθ∆ =  and so: 
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 106 A

M
EI

θ =  

 

 5 1.67
3A

M M
EI E

θ
I

∴ = =  

 

Deflection at C 

To find the deflection at C, we use the vertical intercept CB∆  and Bθ : 

 

 
 

From the figure, we see: 

 

 4C B CBδ θ= − ∆  

 

And so from the BMD and rotation at B: 

 

 
( ) 1 44 1.33 4

2 3

2.665

C

C

EI M M

M
EI

δ

δ

⎛ ⎞⎛= − ⋅ ⋅⎜ ⎟⎜
⎝ ⎠⎝

⎞
⎟
⎠

∴ =
 

 

Dr. C. Caprani 21



Structural Analysis III 

Maximum Deflection 

The first step in finding the maximum deflection is to locate it. We know tow things: 

1. Maximum deflection occurs where there is zero rotation; 

2. Maximum deflection is always close to the centre of the span. 

Based on these facts, we work with Mohr I to find the point of zero rotation, which 

will be located between B and C, as follows: 

 

 Change in rotation 0B Bθ θ= − =  

 

But since we know that the change in rotation is also the area of the M EI  diagram 

we need to find the point x where the area of the M EI  diagram is equal to Bθ : 

 

 
 

Thus: 

 

 
( )

2

10
4 2

8

B

B

xEI M

xEI M

θ

θ

⎛ ⎞ x− = ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

=

 

 

But we know that 1.33B

M
EI

θ = , hence: 
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2

2

1.33
8

10.66
3.265 m from  or 2.735 m from 

M xEI M
EI

x
x B A

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=
=

 

 

So we can see that the maximum deflection is 265 mm shifted from the centre of the 

beam towards the load. Once we know where the maximum deflection is, we can 

calculate is based on the following diagram: 

 

 
 

Thus: 

 

 max B xx Bδ θ= − ∆  

 

( )

( )

2

max

max

1.33
8 3

4.342 1.450

2.892

x xEI x M M

M
M
EI

δ

δ

⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
= −

=

 

 

And since 53.4 kNmM = , max

154.4
EI

δ = . 
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3.3 Problems 

1. For the beam of Example 3, using only Mohr’s First Theorem, show that the 

rotation at support B is equal in magnitude but not direction to that at A. 

 

2. For the following beam, of dimensions 150 mmb =  and  and 225 mmd =
210 kN/mmE = , show that  and 47 10  radsBθ

−= × 9.36 mmBδ = . 

 

 
 

3. For a cantilever AB of length L and stiffness EI, subjected to a UDL, show that: 

 
3 4

;
6 8B B
wL wL
EI E

θ δ= =
I

 

 

4. For a simply-supported beam AB with a point load at mid span (C), show that: 

 
3

48C
PL

EI
δ =  

 

5. For a simply-supported beam AB of length L and stiffness EI, subjected to a UDL, 

show that: 

 
3 3 5; ;

24 24 384A B C
wL wL wL4

EI EI
θ θ δ= = − =

EI
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4. Application to Indeterminate Structures 

4.1 Basis of Approach 

Using the principle of superposition we will separate indeterminate structures into a 

primary and reactant structures.  

 

For these structures we will calculate the deflections at a point for which the 

deflection is known in the original structure. 

 

We will then use compatibility of displacement to equate the two calculated 

deflections to the known deflection in the original structure. 

 

Doing so will yield the value of the redundant reaction chosen for the reactant 

structure. 

 

Once this is known all other load effects (bending, shear, deflections, rotations) can 

be calculated. 

 

See the handout on Compatibility of Displacement and the Principle of Superposition 

for more on this approach. 
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4.2 Example 6: Propped Cantilever 

For the following prismatic beam, find the maximum deflection in span AB and the 

deflection at C in terms of EI. 

 

 
 

Find the reaction at B 

Since this is an indeterminate structure, we first need to solve for one of the unknown 

reactions. Choosing BV  as our redundant reaction, using the principle of 

superposition, we can split the structure up as shown: 

 

 
    (a)      =      (b)         +            (c) 

 

In which R is the value of the chosen redundant. 
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In the final structure (a) we know that the deflection at B, Bδ , must be zero as it is a 

roller support. So from the BMD that results from the superposition of structures (b) 

and (c) we can calculate Bδ  in terms of R and solve since 0Bδ = . 

 

 
 

We have from Mohr II: 

 

 

( )

( ) ( )

1 2 1 22 200 2 2 4 4 4
2 3 2 3

2000 64
3 3

1 2000 64
3

BA
b c

EI R

R

R

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛∆ = ⋅ ⋅ + ⋅ + − ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜
⎞
⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦

= −

= −

 

 

But since 0Aθ = , B BAδ = ∆  and so we have: 

 

 ( )

0
1 2000 64 0
3

64 2000
31.25 kN

BAEI

R

R
R

∆ =

− =

=
= +
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The positive sign for R means that the direction we originally assumed for it 

(upwards) was correct. 

 

At this point the final BMD can be drawn but since its shape would be more complex 

we continue to operate using the structure (b) and (c) BMDs. 

 

Find the location of the maximum deflection 

This is the next step in determining the maximum deflection in span AB. Using the 

knowledge that the tangent at A is horizontal, i.e. 0Aθ = , we look for the distance x 

from A that satisfies: 

 

 0Ax A xdθ θ θ= − =  

 

By inspection on the deflected shape, it is apparent that the maximum deflection 

occurs to the right of the point load. Hence we have the following: 
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So using Mohr I we calculate the change in rotation by finding the area of the 

curvature diagram between A and x. The diagram is split for ease: 

 

 
 

The Area 1 is trivial: 

 

 1
1 200 2002
2

A
EI EI

= ⋅ ⋅ =  

 

For Area 2, we need the height first which is: 

 

 2
4 4 4 125 125 125 125

4 4
x Rh x

EI EI EI E
− ⋅ −

= ⋅ = = −
I

 

 

And so the area itself is: 

 

 2
125 125A x x
EI EI

⎡ ⎤= ⋅ −⎢ ⎥⎣ ⎦
 

 

For Area 3 the height is: 

 

 3
125 125 125 125h x x
EI EI EI EI

⎡ ⎤= − − =⎢ ⎥⎣ ⎦
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And so the area is: 

 

 2
1 125
2

A x x
EI

= ⋅ ⋅  

 

Being careful of the signs for the curvatures, the total area is: 

 

 

1 2 3

2

2

125 125200 125
4 8

125 125 125 200
8 4

AxEId A A A

x x x

x x

θ = − + +

⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 

 

Setting this equal to zero to find the location of the maximum deflection, we have: 

 

 
2

2

125 125 200 0
8

5 40 64

x x

0x x

− + − =

− + =
 

 

Thus, 5.89 mx =  or 2.21 mx = . Since we are dealing with the portion AB, 

2.21 mx = . 

 

Find the maximum deflection 

Since the tangent at both A and x are horizontal, i.e. 0Aθ =  and 0xθ = , the deflection 

is given by: 

 

 max xAδ = ∆  

 

Using Mohr II and Areas 1, 2 and 3 as previous, we have: 
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Area 

1 

1 1
200 1.543

308.67

A x
EI

EI

= − ⋅

= −
 

Area 

2 

 

2
4 2.21 4 55.94

4
Rh

EI EI
−

= ⋅ =  

 

2 2
55.94 2.212.21

2
136.61

A x
EI

EI

= ⋅ ⋅

=
 

Area 

3 

 

3
125 69.062.21h
EI EI

= ⋅ =  

 

3 3
1 69.062.21 1.473
2

112.43

A x
EI

EI

⎡ ⎤= ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

=
 

 

Thus: 

 

 
max

max

308.67 136.61 112.43
59.63

xBEI EI

EI

δ

δ

∆ = = − + +
−

⇒ =
 

 

The negative sign indicates that the negative bending moment diagram dominates, i.e. 

the hogging of the cantilever is pushing the deflection downwards. 
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Find the deflection at C 

For the deflection at C we again use the fact that 0Aθ =  with Mohr II to give: 

 

 C CAδ = ∆  

 

 
 

From the diagram we have: 

 

 

1 4 12 200 4 4 125 2
2 3 2

100

CA

C

EI 8
3

EI
δ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛∆ = − ⋅ ⋅ + + ⋅ ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝

+
=

⎞
⎟
⎠  

 

The positive sign indicates that the positive bending moment region dominates and so 

the deflection is upwards. 

 

Dr. C. Caprani 32



Structural Analysis III 

4.3 Example 7: 2-Span Beam 

For the following beam of constant EI, using Mohr’s theorems: 

(a) Draw the bending moment diagram; 

(b) Determine, Dδ  and Eδ ; 

Give your answers in terms of EI. 

 

 
 

In the last example we knew the rotation at A and this made finding the deflection at 

the redundant support relatively easy. Once again we will choose a redundant 

support, in this case the support at B.  

 

In the present example, we do not know the rotation at A – it must be calculated – and 

so finding the deflection at B is more involved. We can certainly use compatibility of 

displacement at B, but in doing so we will have to calculate the vertical intercept 

from B to A, , twice. Therefore, to save effort, we use BA∆ BA∆  as the measure which 

we apply compatibility of displacement to. We will calculate BA∆  through calculation 

of Aθ  (and using the small angle approximation) and through direct calculation from 

the bending moment diagram. We will then have an equation in R which can be 

solved. 

 

 

Dr. C. Caprani 33



Structural Analysis III 

Rotation at A 

Breaking the structure up into primary and redundant structures: 

 

 
 

So we can see that the final rotation at A is: 

 

 P R
A A Aθ θ θ= +  

 

To find the rotation at A in the primary structure, consider the following: 

 

 
 

By Mohr II we have: 
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 ( )( )240 9 6 12960CAEI∆ = ⋅ =  

 

But we know, from the small angle approximation, 12CA Aθ∆ = , hence: 

 

 

12960 1080
12 12

1080

P CA
A

P
A

EI

EI

θ

θ

∆
= = =

∴ =
 

 

To find the rotation at A for the reactant structure, we have: 

 

 
 

 ( )1 12 3 6 108
2CAEI R⎛ ⎞∆ = ⋅ ⋅ =⎜ ⎟

⎝ ⎠
R  

12CA Aθ∆ =  

 

108 9
12 12
9

R CA
A

R
A

REI R

R
EI

θ

θ

∆
= = =

∴ = −
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Notice that we assign a negative sign to the reactant rotation at A since it is in the 

opposite sense to the primary rotation (which we expect to dominate). 

 

Thus, we have: 

 

 1080 9

P R
A A A

R
EI EI

θ θ θ= +

= −
 

 

Vertical Intercept from B to A 

The second part of the calculation is to find BA∆  directly from calculation of the 

curvature diagram: 

 

 
 

Thus we have: 

 

 ( )1 1 3 16 3 6 240 3 3 240 3
2 3 2 2BAEI R⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛∆ = − ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝
3
3
⎞
⎟
⎠
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18 1080 1440

2520 18
BA

BA

EI R
R

EI

∆ = − + +
−

∴∆ =
 

 

Solution for R 

Now we recognize that 6BA Aθ∆ =  by compatibility of displacement, and so: 

 

 ( )

2520 18 1080 96

2520 18 6 1080 9
36 3960

110 kN

R R
EI EI EI

R R
R
R

− ⎛ ⎞= −⎜ ⎟
⎝ ⎠

− = −

=
=

 

 

Solution to Part (a) 

With this we can immediately solve for the final bending moment diagram by 

superposition of the primary and reactant BMDs: 
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Solution to Part (b) 

We are asked to calculate the deflection at D and E. However, since the beam is 

symmetrical D Eδ δ=  and so we need only calculate one of them – say Dδ . Using the 

(now standard) diagram for the calculation of deflection: 

 

 
 

 ( )9 1101080 90
A EI EI E

θ = − =
I

 

 1 33 75 112.5
3 3DAEI ⎛ ⎞⎛ ⎞∆ = ⋅ ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

But 3D A DAδ θ= − ∆ , thus:  

 

( )3 90 112.5
157.5

157.5

D

D E

EI

EI

δ

δ δ

= −

=

= =
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4.4 Example 8: Simple Frame 

For the following frame of constant 240 MNmEI = , using Mohr’s theorems: 

(a) Draw the bending moment and shear force diagram; 

(b) Determine the horizontal deflection at E. 

 

Part (a) 

Solve for a Redundant 

As with the beams, we split the structure into primary and reactant structures: 
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We also need to draw the deflected shape diagram of the original structure to identify 

displacements that we can use: 

 

 
 

To solve for R we could use any known displacement. In this case we will use the 

vertical intercept  as shown, because: DB∆

• We can determine  for the original structure in terms of R using Mohr’s 

Second Theorem; 

DB∆

• We see that 6DB Bθ∆ =  and so using Mohr’s First Theorem for the original 

structure we will find Bθ , again in terms of R; 

• We equate the two methods of calculating DB∆  (both are in terms of R) and 

solve for R. 
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Find  by Mohr II DB∆

Looking at the combined bending moment diagram, we have: 

 

 
 

 
1 2 16 6 6 3 120 3 3
2 3 2

72 900

DBEI R

R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡∆ = ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
= −

2
3

⎤
⎥⎦  

 

Find Bθ  by Mohr I 

Since the tangent at A is vertical, the rotation at B will be the change in rotation from 

A to B: 

 

 

to 

0

Area of 

BA B A

B

B

B A

d

M
EI

θ θ θ
θ
θ

= −
= −
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 

Therefore, by Mohr I: 

 
to 

Area of 

6 6 120 6
36 720

B
B A

MEI
EI

R
R

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

= ⋅ − ⋅
= −
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Equate and Solve for R 

As identified previously: 

 

 [ ]
6

72 900 6 36 720
18.13 kN

DB B

R R
R

θ∆ =

− = −

=

 

 

Diagrams 

Knowing R we can then solve for the reactions, bending moment and shear force 

diagrams. The results are: 
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Part (b) 

The movement at E is comprised of Dxδ  and 6 Dθ  as shown in the deflection diagram. 

These are found as: 

• Since the length of member BD doesn’t change, Dx Bxδ δ= . Further, by Mohr II, 

Bx BAδ = ∆ ; 

• By Mohr I, D B d BDθ θ θ= − , that is, the rotation at D is the rotation at B minus 

the change in rotation from B to D: 

 

 
 

So we have: 

 

 [ ][ ] [ ][ ]6 6 3 120 6 3
202.5

BAEI R∆ = ⋅ − ⋅

= −
 

 

 
1 16 6 120 3
2 2

146.25

BDEId Rθ ⎡ ⎤ ⎡ ⎤= ⋅ ⋅ − ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

 

 

Notice that we still use the primary and reactant diagrams even though we know R. 

We do this because the shapes and distances are simpler to deal with. 

 

From before we know: 
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 36 720 67.5BEI Rθ = − =  

 

Thus, we have: 

 

 67.5 146.25
78.75

D B BEI EI d Dθ θ θ= −
= −
= −

 

 

The minus indicates that it is a rotation in opposite direction to that of Bθ  which is 

clear from the previous diagram. Since we have taken account of the sense of the 

rotation, we are only interested in its absolute value. A similar argument applies to 

the minus sign for the deflection at B. Therefore: 

 

 

6
202.5 78.756

675

Ex Bx D

EI EI

EI

δ δ θ= +

= + ⋅

=

 

 

Using 240 MNmEI =  gives 16.9 mmExδ = . 
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4.5 Example 9: Complex Frame 

For the following frame of constant 240 MNmEI = , using Mohr’s theorems: 

(a) Determine the reactions and draw the bending moment diagram; 

(b) Determine the horizontal deflection at D. 

 

 
 

In this frame we have the following added complexities: 

• There is a UDL and a point load which leads to a mix of parabolic, triangular 

and rectangular BMDs; 

• There is a different EI value for different parts of the frame – we must take this 

into account when performing calculations and not just consider the M diagram 

but the M EI  diagram as per Mohr’s Theorems. 
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Solve for a Redundant 

As is usual, we split the frame up: 

 

 
 

Next we draw the deflected shape diagram of the original structure to identify 

displacements that we can use: 
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To solve for R we will use the vertical intercept DC∆  as shown, because: 

• We can determine DC∆  for the original structure in terms of R using Mohr II; 

• We see that 6DC Cθ∆ =  and so using Mohr I for the original structure we will 

find Bθ , again in terms of R; 

• As usual, we equate the two methods of calculating DC∆  (both are in terms of 

R) and solve for R. 

 

Dr. C. Caprani 47



Structural Analysis III 

The Rotation at C 

To find the rotation at C, we must base our thoughts on the fact that we are only able 

to calculate the change in rotation from one point to another using Mohr I. Thus we 

identify that we know the rotation at A is zero – since it is a fixed support – and we 

can find the change in rotation from A to C, using Mohr I. Therefore: 

 

 
 to 

0
A C C A

C

C

dθ θ θ
θ
θ

= −
= −
=

 

 

 
 

At this point we must recognize that since the frame is swaying to the right, the 

bending moment on the outside ‘dominates’ (as we saw for the maximum deflection 

calculation in Example 6). The change in rotation is the difference of the absolute 

values of the two diagrams, hence we have, from the figure, and from Mohr I: 

 

 

( ) ( ) to 

1360 8 240 4 6 8
2

3360 48
3360 48

A C

C

C

EId R

EI R
R

EI

θ

θ

θ

⎛ ⎞= ⋅ + ⋅ ⋅ − ⋅⎜ ⎟
⎝ ⎠

= −

−
∴ =
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The Vertical Intercept DC 

Using Mohr II and from the figure we have: 

 

 
 

 

1 2 1 31.5 6 6 6 6 360 6
2 3 3 4

1.5 72 3240
48 2160

DC

DC

DC

EI R

EI R
R

EI

⎡ ⎤ ⎡⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎤∆ = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣
∆ = −

−
∴∆ =

⎥
⎦

 

 

Note that to have neglected the different EI value for member CD would change the 

result significantly. 

 

Solve for R 

By compatibility of displacement we have 6DC Cθ∆ =  and so: 

 

 
( )48 2160 6 3360 48

336 22320
66.43 kN

R R
R
R

− = −

=
=

 

 

With R now known we can calculate the horizontal deflection at D. 
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Part (b) - Horizontal Deflection at D 

From the deflected shape diagram of the final frame and by neglecting axial 

deformation of member CD, we see that the horizontal displacement at D must be the 

same as that at C. Note that it is easier at this stage to work with the simpler shape of 

the separate primary and reactant BMDs. Using Mohr II we can find Cxδ  as shown: 

 

 
 

 ( )( ) ( )( ) 1 26 8 4 360 8 4 4 240 4 4
2 3

192 14720

BAEI R

R

⎡ ⎤⎛ ⎞⎛∆ = ⋅ − ⋅ + ⋅ ⋅ + ⋅⎡ ⎤ ⎜ ⎟⎜
⎞
⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠⎣ ⎦

= −

 

 

Now substituting  and 66.4 kNR = Dx Cx BAδ δ= = ∆ : 

 

 1971.2 49.3 mmDx EI
δ −

= = →  

 

Note that the negative sign indicates that the bending on the outside of the frame 

dominates, pushing the frame to the right as we expected. 
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Part (a) – Reactions and Bending Moment Diagram 

Reactions 

Taking the whole frame, and showing the calculated value for R, we have: 

 

 
 

 

( )

2

0 20 6 66.4 0 53.6 kN

0 60 0 60 kN 

6M about 0 66.4 6 20 60 4 0 201.6 kNm
2

y A A

x A A

A A

F V V

F H H

A M M

= ∴ ⋅ − − = ∴ =

= ∴ − = ∴ =

= ∴ + ⋅ − ⋅ − ⋅ = ∴ = +

∑

∑

∑

↑

←  

 

Note that it is easier to use the superposition of the primary and reactant BMDs to 

find the moment at A: 

 

 ( )6 66.4 600 201.6 kNmAM = − = −  

 

The negative sign indicate the moment on the outside of the frame dominates and so 

tension is on the left. 
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Bending Moment Diagram 

We find the moments at salient points: 

 

 

2

M about 0

620 66.4 6 0
2

38.4 kNm

C

C

C

M

M

=

∴ + ⋅ − ⋅ =

∴ = +

∑
 

And so tension is on the bottom at C. 

 

The moment at B is most easily found from superposition of the BMDs as before: 

 

 ( )6 66.4 360 38.4 kNmBM = − =  

 

And so tension is on the inside of the frame at B. Lastly we must find the value of 

maximum moment in span CD. The position of zero shear is found as: 

 

 

 

 53.6 2.68 m
20

x = =  

 

And so the distance from D is: 

 

 6 2.68 3.32 m− =  

 

The maximum moment is thus found from a free body diagram as follows: 
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2

max

M about 0

3.3220 66.4 3.32 0
2

110.2 kNmC

X

M

M

=

∴ + ⋅ − ⋅ =

∴ = +

∑
 

And so tension is on the bottom as 

expected. 

 

Summary of Solution 

In summary the final solution for this frame is: 
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4.6 Problems 

1. For the following prismatic beam, find the bending moment diagram and the 

rotation at E in terms of EI. 

 
2. For the following prismatic beam, find the bending moment diagram and the 

rotation at C in terms of EI. (Autumn 2007) 

 
3. For the following prismatic frame, find the bending moment and shear force 

diagrams and the horizontal deflection at E in terms of EI. 
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4. For the following prismatic frame, find the bending moment diagram and the 

horizontal deflection at D in terms of EI. (Summer 2006) 

 

 
 

5. For the following prismatic frame, find the bending moment diagram and the 

horizontal defection at C in terms of EI. (Summer 2007) 
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6. Draw the bending moment diagram and find the maximum deflection for the 

following beam. Take . (Semester 1 2007/8) 320 10  kNmEI = × 2

 

A

HINGE

40 kN

2 m 2 m2 m4 m

B C D E

 
 

7. Draw the bending moment diagram and determine the horizontal deflection at D 

for the following frame. Take 34 10  kNm2EI = × . (Summer 1998) 
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